
Distributed robust statistical learning: Byzantine mirror descent

Dongsheng Ding, Xiaohan Wei, and Mihailo R. Jovanović

Abstract— We consider the distributed statistical learning
problem in a high-dimensional adversarial scenario. At each
iteration, m worker machines compute stochastic gradients
and send them to a master machine. However, an α-fraction
of m worker machines, called Byzantine machines, may act
adversarially and send faulty gradients. To guard against faulty
information sharing, we develop a distributed robust learning
algorithm based on mirror descent. This algorithm is provably
robust against Byzantine machines whenever α ∈ [0, 1/2). For
smooth convex functions, we show that running the proposed
algorithm for T iterations achieves a statistical error bound
Õ
(
1/

√
mT + α/

√
T
)
. This result holds for a large class of

normed spaces and it matches the known statistical error bound
for Byzantine stochastic gradient in the Euclidean space setting.
A key feature of the algorithm is that the dimension dependence
of the bound scales with the dual norm of the gradient; in
particular, for probability simplex, we show that it depends
logarithmically on the problem dimension d. Such a weak
dependence is desirable in high-dimensional statistical learning
and it has been known to hold for the classical mirror descent
but it appears to be new for the Byzantine gradient scenario.

I. INTRODUCTION

Modern statistical learning usually requires algorithms to
learn a prediction model in a high-dimensional space from
massive amounts of data. Since the training data are often
spread across a large number of local worker machines,
efficient algorithms should make local machines collabora-
tively learn a shared model, while maintaining distributed
computation and storage. This is one of the main topics
of Federated Learning [1]–[3]. However, such a distributed
learning brings new challenges not faced by classical cen-
tralized learning including communication/storage failure
and adversarial attacks from malicious worker machines.
Thus, robustness against arbitrary unpredictable corruptions
becomes crucial to improving the learning efficiency, a topic
that has been investigated in a series of recent papers [4]–[7].

A well-known model that accounts for abnormal worker
machines is the Byzantine failure model [8]. In this model,
faulty Byzantine machines can send arbitrary messages to the
master machine. We assume that these Byzantine machines
have a complete knowledge of the system and learning
algorithms and that they can collude with each other. One
recent surging research interest is to investigate the robust-
ness of different optimization and learning algorithms against
Byzantine failures with provable statistical or computational
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guarantees. Some recent works along this direction include
batch gradient descent [4], [5], [7], stochastic gradient de-
scent (SGD) [1], [6], [9], and alternating direction method
of multipliers (ADMM) [10].
A. System model

We assume that the training data z are sampled from some
unknown distribution D on the sample space Z . Let f(w; z)
be a corresponding loss function where w ∈ W ⊆ Rd
and W is the parameter space. The goal of the statistical
learning is to learn a model w? defined as the minimizer of
the population loss function F (w) := Ez∼D [f(w; z)],

w? = argmin
w∈W

F (w). (1)

The computational model consists of one master machine
and m worker machines. At iteration t, the ith worker
machine receives a data point zit which is sampled in-
dependently from the distribution D. The empirical risk
function for the population loss F (w) at iteration t becomes
Ft(w) = 1

m

∑m
i=1 f(w; zit). Among m worker machines, we

assume that an α-fraction of them are Byzantine, meaning
that they can send arbitrary messages to the master machine
synchronously. At iteration t, each worker machine receives
the current iterate wt, utilizes local data point zit to compute
the associated gradient and returns it to the master machine.
There are two possibilities: (1) a non-Byzantine machine
returns ∇f(wt, z

i
t) where zit ∼ D; (2) a Byzantine ma-

chine adversarially returns arbitrary vector. After receiving
information from all worker machines, the master machine
aggregates them for the optimization routine and generates
the next iterate wt+1, and then broadcasts wt+1 to all worker
machines. After T iterations, the master machine should
obtain an approximate solution to the optimal solution in (1).

In this paper, we study such distributed computational
models that can be used for general distributed statistical
learning problems. We propose a new learning algorithm that
includes mirror descent algorithm [13] as the optimization
routine and study its convergence properties. Benefited from
mirror descent, we are enabled to adapt our algorithm to
the problem geometry so that its convergence has a weak
dependence on the problem dimension d.
B. Related work

Among various works on distributed statistical learning
under Byzantine failures [1], [4]–[7], [9], the closely-related
work is [6]. The authors present a robust variant of SGD
where the gradient is calculated through a median aggrega-
tion of gradients from worker machines on the fly. Using
the property of median and bounded good gradients, the
authors achieve a convergence rate O(V (1/

√
mT+α/

√
T )),

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1397-5/19/$31.00 ©2019 IEEE 1822



where V is the Euclidean norm bound of the stochastic
gradient which usually scales with

√
d. A more challenging

scenario shown in [7] is that the good gradients obtained
by earnest worker machines are unbounded heavy-tailed.
Robust aggregation methods such as adaptive truncated mean
of sampled gradients or entry-wise median-of-mean are
used in [7] to design robust batch gradient algorithms. The
achieved statistical rate is O(poly(d) (1/

√
mT + α/

√
T )),

which only works well in low-dimensional scenarios due to
the polynomial factor poly(d).

In the earlier results of [4], [5], other types of aggregation
methods such as the geometric median-of-mean are used
to estimate the population gradient in robust batch gradient
algorithms. However, compared to the aforementioned work,
the dependence of their statistical rates on α is suboptimal,
e.g., O(poly(d)

√
α/T ). In [14], [15], different heuristic

mechanisms are proposed for defending against an arbitrary
number of Byzantine machines in batch gradient methods.
C. Our contributions

We build on mirror descent [13] and introduce a simple
distributed robust learning algorithm against Byzantine ma-
chines for α ∈ [0, 1/2). This method enables us to adapt
the algorithm to the problem geometry so that the error
bound has a mild dimension dependence. In any normed
space (Rd, ‖ · ‖), when the function is convex and smooth,
running the proposed algorithm for T steps achieves the
statistical error bound Õ(V

(
1/
√
mT +α/

√
T
)
) where Õ(·)

omits some logarithm factors and V is the dual norm bound
of gradients. Particularly, when the space is a probability
simplex with `1-norm, the dual norm bound is dimension-
free. This is a desirable feature in high-dimensional statistical
learning for it implies that the statistical error bound scales
logarithmically to the dimension d.
D. Organization of the paper

In Section II, we prepare some preliminaries. In Sec-
tion III, we introduce the Byzantine mirror descent algorithm.
We show the convergence analysis in Section IV. We discuss
the probability simplex case in Section V and we close the
paper in Section VI.

II. PRELIMINARIES

Let ‖·‖ be any norm in Rd. The dual norm ‖·‖∗ is defined
as ‖g‖∗ = sup‖x‖≤1 g

Tx. LetW ∈ Rd be a compact, convex
set with diameter W .

Definition 1: Let f :W → R be a differentiable function.
(1) f is σ-strongly convex w.r.t. ‖ · ‖, if f(y) ≥ f(x) +
〈∇f(x), y − x〉+ σ

2 ‖y − x‖
2, ∀x, y ∈ W;

(2) f is L-smooth w.r.t. ‖ · ‖, if ‖∇f(x) − ∇f(y)‖∗ ≤
L‖x− y‖, ∀x, y ∈ W;

(3) f is G-Lipschitz (continuous) w.r.t. ‖ · ‖, if
‖∇f(x)‖∗ ≤ G, ∀x ∈ W .

Definition 2: Let X ⊂ Rd be an open convex set such
that W ⊂ X̄ and X ∩W 6= ∅.

(1) Φ : X → R is a mirror map, if it satisfies: (i) Φ is
1-strongly convex w.r.t. ‖ · ‖, and differentiable; (ii)
∇Φ(X ) = Rd; (iii) lim

x→∂X
‖∇Φ(x)‖ = +∞;

(2) The Bregman divergence associated with Φ is

DΦ(x, y) = Φ(x) − Φ(y) − ∇Φ(y)T (x− y).

Examples of such mirror maps and the associated Bregman
divergences are given as follows. The simplest example is
when X = Rd and Φ(x) = 1

2‖x‖
2
2. The function Φ is a

mirror map that is 1-strongly convex w.r.t. ‖ · ‖2, and the
associated Bregman divergence is DΦ(x, y) = 1

2‖x−y‖
2
2; A

more interesting example is when X = {x ∈ Rd : x(i) > 0}
and Φ(x) =

∑d
i=1 x(i) log x(i) (i.e., negative entropy). By

Pinsker’s inequality, the mirror map Φ is 1-strongly convex
w.r.t. ‖ · ‖1 on the probability simplex {x ∈ Rd : x(i) ≥
0,
∑d
i=1 x(i) = 1}, and the associated Bregman divergence

is given by DΦ(x, y) =
∑d
i=1 x(i) log x(i)

y(i) , also known as
Kullback-Leibler divergence.

Definition 3: The Banach space (Rd, ‖ · ‖) is 2-smooth, if
the modulus of smoothness

ρ(τ) = sup
‖x‖=1,‖y‖=τ

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1

}
behaves as ρ(τ) ≤ Cτ2 for some constant C.

Remark 1: This definition is unintuitive from the first
sight, however, one can show that for any norm ‖ · ‖p, 1 <
p < ∞, the corresponding Banach space (Rd, ‖ · ‖p) is 2-
smooth. Furthermore, when (Rd, ‖·‖∗) is a 2-smooth Banach
space, there always exists a Φ(·) which is 1-strongly convex
w.r.t. the primal norm ‖ · ‖ (see [16]). Such a condition is
crucial since our algorithm is of proximal gradient type and
it ensures the existence of a strongly convex regularizer. But
when ‖ · ‖∗ = ‖ · ‖∞, (Rd, ‖ · ‖∞) is not 2-smooth. We will
address this additional case separately in Section V.

For succinctness, we denote D = DΦ. We take a variant of
the mirror descent scheme [13] based on a mirror map Φ as
follows. The algorithm maintains iterates {wt, ξt}∞t=1 within
W×Rd. At iteration t, it computes the gradient ξt = ∇F (wt)
and performs the updates,

wt+1 = argmin
w∈W

η 〈ξt, w − wt〉 + D(w,wt) (2)

where w1 ∈ X and η > 0 is the constant stepsize. We state
an important property of iterates {wt, ξt}∞t=1 in Lemma 1;
see [17, Lemma 14] for a general version.

Lemma 1: Let Φ be a mirror map. Let {wt, ξt}∞t=1 be
generated by (2). Then, we have 〈ξt, wt − w〉 ≤ 〈ξt, wt −
wt+1〉 −D(wt+1, wt)/η + (D(w,wt)−D(w,wt+1))/η.

In the Byzantine setup, since Byzantine machines can send
wrong gradients, it is difficult to obtain an unbiased estimate
of the population gradient. The following concentration result
will be useful for us to deal with this issue.

Lemma 2: [18, Theorem 3] Let (Rd, ‖ · ‖) be a 2-
smooth Banach space. Assume X1, · · · , XT be a martingale
difference sequence in Rd with ‖Xt‖ ≤ M . For any δ > 0,
it holds

P

(∥∥∥∥ T∑
k=1

Xk

∥∥∥∥ ≥ 2
√

2T

(
R+ 2

√
2 log

√
2
δ

)
M

)
≤ δ
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where R2 := supx,y∈W DΦ(x, y).
When gradient estimates are not far away from the pop-

ulation gradient, the mirror descent algorithm is expected
to return an approximate solution to the optimization prob-
lem (1) after T iterations. Let w1 ∈ W be an initial point.
Let α-fraction of m worker machines be Byzantine where
α ∈ [0, 1/2). Let Ω ⊆ [m] be an unknown set of good or
non-Byzantine machines. At iteration t, all worker machines
receive the same iterate wt from the master machine. Then
they utilize their own sampled data points zit to compute
local gradients ∇it := ∇f(wt, z

i
t) and send them back, if

they satisfy Assumption 1.
Assumption 1: Let ∇t := ∇F (wt). At each iteration t,

there exists V > 0 such that worker machine i ∈ Ω satisfies

‖∇it −∇t‖∗ ≤ V.

The rational behind Assumption 1 is that the gradients
of all good machines behave mildly, not far away from
the population gradient ∇t which is unknown. Although
Byzantine machines may also satisfy this assumption, their
effect on the solution quality is negligible as we will show
in the next section.

III. BYZANTINE MIRROR DESCENT

We propose a robust variant of mirror descent to the
Byzantine setting. We describe this algorithm in Algorithm 1
as Byzantine mirror descent. Let [T ] = {1, 2, · · · , T} be a
set of iteration indices and [m] = {1, 2, · · · ,m} be a set of
worker machines. At each iteration t ∈ [T ], the algorithm
maintains iterate (wt, ξt) ∈ W × Rd and a set of ”good”
worker machine in Ωt ⊂ [m]. The gradient estimate ξt is
computed using the averaged gradients in Ωt,

ξt =
1

m

∑
i∈Ωt

∇it (3)

where the set Ωt is maintained by tracking two running
sequences for each worker machine i ∈ [m],

Ait =
t∑

k=1

〈∇ik, wk − w1〉, Bit =
t∑

k=1

∇ik.

By the martingale concentration, for each good worker
machine i, BiT will concentrate at the population sum B?T =∑T
k=1∇k with a maximum deviation of

√
T . If some worker

machines are too far away from the mean, we can mark them
as Byzantine machines. However, some Byzantine machines
may hide themselves with small deviation in terms of Bit . To
identify such Byzantine machines, we further consider the
martingale concentration for Ait. If Ait is too far away from
the population sum A?t =

∑t
k=1〈∇k, wk − w1〉, we mark

them as Byzantine machines. By removing these Byzantine
machines, we put the rest in the set Ωt as an estimated set
of good machines at iteration t.

We start Ω1 with [m]. The set Ωt contains all machines
i ∈ Ωt−1, whose Ait, B

i
t and ∇it are close to their medians

Amed
t , Bmed

t , and ∇med
t with thresholds IA, IB and 4V re-

spectively. We will show that if we choose these thresholds

appropriately, then Ωt contains all good machines, i.e., Ω ⊂
Ωt. Thus, (3) works as an estimation of the population
gradient at iteration t in terms of the boundedness of errors,

E1 =
T∑
t=1

∑
i∈Ωt

〈∇it −∇t, wt − w∗〉

E2 =
1

T

T∑
t=1

∥∥∥∥ 1

m

∑
i∈Ωt

(∇it −∇t)
∥∥∥∥
∗

(4)

where E1 is the accumulative optimality bias, and E2 mea-
sures the variance of estimating the population gradient.

Algorithm 1 Byzantine mirror descent
Input: Learning rate η > 0, starting point w1 ∈ X ,
diameters W,R > 0, number of iterations T , constant
thresholds IA = 4WV∆

√
2T and IB = 4V∆

√
2T , and

∆ = R+ 2

√
2 log 8

√
2mT
δ .

1: Ω1 ← [m];
2: for all t← 1 to T do
3: for all i← 1 to m do
4: receive ∇it ∈ Rd from worker machine i ∈ [m]
5:

Ait ←
t∑

k=1

〈∇ik, wk − w1〉, Bit ←
t∑

k=1

∇ik

6: end for
7: Amed

t := median(A1
t , · · · , Amt )

8: Bmed
t ← Bit where i ∈ [m] is any machine s.t.

|{j ∈ [m] : ‖Bit −B
j
t ‖∗ ≤ IB}| >

m

2

9: ∇med
t ← ∇it where i ∈ [m] is any machine s.t.

|{j ∈ [m] : ‖∇it −∇
j
t‖∗ ≤ 2V }| > m

2

10: Ωt ← {i ∈ Ωt−1 : |Ait − Amed
t | ≤ IA ∧ ‖Bit −

Bmed
t ‖∗ ≤ IB ∧ ‖∇it −∇med

t ‖∗ ≤ 4V }
11:

ξt =
1

m

∑
i∈Ωt

∇it

12: wt+1 = argminw∈W D(w,wt) + η 〈ξk, w−wt〉
13: end for

IV. CONVERGENCE ANALYSIS

In this section, we show upper bounds for errors E1 and
E2, and provide statistical error bound analysis when the
objective function is convex and smooth.

A. Three events
Denote ∆ := R + 2

√
2 log 8

√
2mT
δ . We use Lemma 2 to

identify probability bounds for martingale sequences Ait, B
i
t

and ∇it over iteration t. We describe them as follows.
Proposition 3: Let

A?t =
t∑

k=1

〈∇k, wk−w1〉, Amed
t = median(A1

t , · · · , Amt ).
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With probability at least 1− δ/4, we have

(1) for all i ∈ Ω and t ∈ [T ], |Ait −A?t | ≤ 2WV∆
√

2t;
(2) for all i ∈ Ω and t ∈ [T ], |Ait − Amed

t | ≤ 4WV∆
√

2t
and |A?t −Amed

t | ≤ 2WV∆
√

2t;
(3) |

∑
i∈Ω(Ait −A?T )| ≤ 2WV∆

√
2Tm.

We denote this event by EventA.

Proof: See Appendix A.

Proposition 4: Let B?t =
∑t
k=1∇k, and Bmed

t = Bit
where i is any machine in [m] such that at least half of
machines j ∈ [m] satisfies ‖Bjt −Bit‖∗ ≤ 4V∆

√
2t.

With probability at least 1− δ/4, we have

(1) for all i ∈ Ω and t ∈ [T ], ‖Bit −B?t ‖∗ ≤ 2V∆
√

2t;
(2) for all t ∈ [T ], each i ∈ Ω is a valid choice for Bmed

t =
Bit;

(3) for all i ∈ Ω and t ∈ [T ], ‖Bit − Bmed
t ‖∗ ≤ 4V∆

√
2t

and ‖B?t −Bmed
t ‖∗ ≤ 6V∆

√
2t;

(4) ‖
∑
i∈Ω(Bit −B?T )‖∗ ≤ 2V∆

√
2Tm.

We denote this event by EventB .

Proof: See Appendix B.

Proposition 5: With probability at least 1− δ/4, we have∥∥∥∥ 1

m

∑
i∈Ω

(∇it −∇t)
∥∥∥∥2

∗
≤ 8V 2∆2

m

for all t ∈ [T ]. We denote this event by EventC .

Proof: See Appendix C.

B. Key upper bounds

Denote IA := 4WV∆
√

2T and IB := 4V∆
√

2T . We
compute ∇med

t = ∇it where i is any machine in [m] such that
at least half of machines j ∈ [m] satisfies ‖∇it−∇

j
t‖∗ ≤ 2V .

Proposition 6: For all t ∈ [T ], each i ∈ Ω is a valid choice
for ∇med

t = ∇it, and ‖∇med
t −∇t‖∗ ≤ 3V .

Proof: See Appendix D.

Proposition 7: If EventA and EventB hold, then Ω ⊆ Ωt
for t ∈ [T ].

Proof: See Appendix E.

We show upper bounds for E1 and E2 in Lemmas 8 and 9.

Lemma 8: If EventA and EventB hold, then

|E1| ≤ 4WV∆
√

2Tm+ 16αmWV∆
√

2T .

Proof: See Appendix F.

Lemma 9: If EventA,EventB and EventC hold, we have

E2 ≤
16V 2∆2

m
+ 32α2V 2.

Proof: See Appendix G.

C. Statistical error bound

Theorem 10: Let (Rd, ‖·‖∗) be a 2-smooth Banach space.
Let the objective function F (w) be G-Lipschitz and L-
smooth, and Assumption 1 hold. Suppose η ≤ 1

2L , IA =

4WV∆
√

2T , and IB = 4V∆
√

2T . Then, with probability
at least 1− δ, we have

F (w̄)− F (w∗) ≤ 2R2

ηT
+

8WV∆(
√

2mT + 4αm
√

2T )

mT

+ η

(
32V 2∆2

m
+ 64α2V 2

)
where w̄ := 1

T

∑T
t=1 wt+1.

Proof: First we have the decomposition
∑T
t=1〈ξt, wt−

w?〉 = E1

m + 1
m

∑T
t=1

∑
i∈Ωt
〈∇t, wt−w∗〉. By the convexity

and the L-smoothness of F , we know 〈∇t, wt − w∗〉 ≥
F (wt)−F (w?) ≥ F (wt+1)−〈∇t, wt+1−wt〉− L

2 ‖wt+1−
wt‖2. Thus, we have

1

T

T∑
t=1

〈ξt, wt − w?〉

≥ E1

mT
+

1

mT

T∑
t=1

∑
i∈Ωt

(F (wt+1) − F (w∗))

− 1

mT

T∑
t=1

∑
i∈Ωt

(〈∇t, wt+1 − wt〉 +
L

2
‖wt+1 − wt‖2).

(5)
On the other hand, we substitute w = w? and ξt =

1
m

∑
i∈Ωt
∇it into the inequality in Lemma 1. The time

average of this inequality over t becomes

1

T

T∑
t=1

〈ξt, wt − w∗〉

≤ 1

T

T∑
t=1

〈
1

m

∑
i∈Ωt

∇it, wt−wt+1

〉

− 1

ηT

T∑
t=1

D(wt+1, wt) +
D(w?, w1)−D(w?, wT+1)

ηT
.

Due to the 1-strongly convexity of Φ in the primal norm
‖·‖, we have D(wt+1, wt) ≥ ‖wt+1−wt‖2/2. Combing the
above inequality with (5) yields

1

mT

T∑
t=1

∑
i∈Ωt

(F (wt+1)− F (w∗))

≤ 1

T

T∑
t=1

〈
1

m

∑
i∈Ωt

(∇t −∇it), wt+1 − wt

〉

− 1

T

T∑
t=1

(
1

2η
− L

2

)
‖wt − wt+1‖2 +

D(w?, w1)

ηT
− E1

mT

≤ 1

T

T∑
t=1

∥∥∥∥∥ 1

m

∑
i∈Ωt

(∇t −∇it)

∥∥∥∥∥
∗

‖wt+1 − wt‖

− 1

4ηT

T∑
t=1

‖wt − wt+1‖2 +
R2

ηT
− E1

mT

≤ R2

ηT
− E1

mT
+ ηE2

where we use 1
2η −

L
2 ≥

1
4η and D(w?, w1) ≤ R2 for the

second inequality; the third inequality is due to 2‖a‖∗‖b‖ ≤
‖a‖2∗ + ‖b‖2.
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Finally, we collect the upper bounds on |E1| and E2 and
use the convexity of F to complete the proof.

1

mT

T∑
t=1

∑
i∈Ωt

(F (wt+1)− F (w∗))

≥ 1

2T

T∑
t=1

(F (wt+1)− F (w∗))

≥ 1

2
(F (w̄)− F (w∗)).

Remark 2: When the gradients ∇it are exactly the popula-
tion gradient ∇t, the dual norm bound of gradients becomes
V = 0. The first term O(R2/T ) matches the standard rate
for the mirror descent [13] when the objective function is
convex and smooth. The error bound in Theorem 10 can
be tuned to be optimal by choosing η carefully. There
are two cases. (i) when αm ≥

√
m, we choose η =

min(1/(αV
√
T ), 1/(2L)); and (ii) when αm <

√
m, we

choose η = min(
√
m/T/V, 1/(2L)). Thus, we have

F (w̄)− F (w∗) ≤ Õ

(
V

(
R2

T
+

1√
mT

+
α√
T

))
When there are no Byzantine worker machines, i.e. α = 0,
the first two terms are similar to the rate for the classical
mini-batch SGD [19]. The last term accounts for Byzantine
worker machines if α 6= 0.

V. PROBABILITY SIMPLEX CASE

When the dual norm ‖·‖∗ = ‖·‖∞, the associated Banach
space (Rd, ‖ · ‖∞) is not 2-smooth and Lemma 2 does not
apply. Even though, we can still use the proposed Byzantine
mirror descent, but with some changes in the algorithm
setting.

We set the mirror map Φ be the negative entropy, and the
constraint setW be the probability simplex. Thus, we replace
the type of norm in all previous bounds for gradients by
∞-norm. First, the upper bound in Assumption 1 becomes
entry-wise bounded. Second, not Lemma 2, we use the
Azuma’s inequality [20, Theorem 17] to establish similar
concentration results in Section IV-A and Section IV-B. We
omit them here due to the limit of space. We just mention
some changes in the algorithm. Since Φ is 1-strongly convex
w.r.t. ‖ · ‖1 on W , the diameter of W is W = 1. We choose
IA = IB = 4V∆

√
T and ∆ =

√
log 16mT

δ . Upper bounds
for E1 and E2 are given as follows, which are similar to [6,
Lemma 3.6] and [6, Lemma 3.7].

|E1| ≤ 4V∆
√
Tm + 16αmV∆

√
T

E2 ≤
4V 2∆2

m
+ 32α2V 2.

(6)

Theorem 11: Let (Rd, ‖ · ‖∗) be equipped with the norm
‖ · ‖∗ = ‖ · ‖∞. Let the objective function F (w) be G-
Lipschitz and L-smooth, and Assumption 1 hold. Let the
mirror map Φ(w) be the negative entropy. Suppose η ≤ 1

2L

and IA = IB = 4V∆
√
T . Then, with probability at least

1− δ, we have

F (w̄)−F (w∗) ≤ 2(log d)2

ηT
+

8V∆(
√
mT + 4αm

√
T )

mT

+ η

(
4V 2∆2

m
+ 32α2V 2

)
where w̄ = 1

T

∑T
t=1 wt+1 and d is the problem dimension.

Proof: The proof is similar to proving Theorem 10. We
use the error bounds in (6) and R2 = log d.

Remark 3: If we choose η optimally as in Remark 2, then

F (w̄)− F (w∗) ≤ Õ

(
log d

T
+

1√
mT

+
α√
T

)
The upper bounds G and V in Definition 1 and Assumption 1
become entry-wise constants when ‖ · ‖∗ = ‖ · ‖∞. The
only left dimension factor is log d. Therefore, the above error
bound is almost dimension-free, meaning that it scales as
O(log d).

VI. CONCLUSION

In this paper, we propose a new variant of the mirror
descent for robust distributed learning problems in Byzantine
setting. We show the robustness of this algorithm to Byzan-
tine failures whenever the fraction of Byzantine machines
α ∈ [0, 1/2). In T iterations, we show the statistical error
bound O(1/

√
mT + α/

√
T ) when the objective function

is convex and smooth. In the probability simplex case,
the statistical error bound enjoys the almost dimension-free
property, i.e., it scales as O(log d), where d is the problem
dimension.

APPENDIX

A. Proof of Proposition 3
(1) Note that E[〈∇ik − ∇k, wk − w1〉] = 0 and |〈∇ik −
∇k, wk − w1〉| ≤ ‖∇ik − ∇k‖∗ · ‖wk − w1‖ ≤ VW .
Therefore, we can use Lemma 2 by choosing Xk =
〈∇ik − ∇k, xk − x1〉. First we can obtain that |Ait −
A?t | ≤ 2WV∆

√
2t holds with probability at least 1−

δ
8mT . Then we take an union bound over i ∈ Ω and
t ∈ [T ].

(2) Since |Ω| > m/2, a special case of (1) is that |A?t −
Amed
t | ≤ 2WV∆

√
2t. By the triangle inequality, we

have |Ait −Amed
t | ≤ 4WV∆

√
2t.

(3) If we apply Lemma 2 on {X1, X2, · · · , XT |Ω|} =
{〈∇ik−∇k, wk−w1〉}k∈[T ],i∈Ω, we can have a similar
bound as (1).

B. Proof of Proposition 4
(1) Note that E[∇ki ] = ∇k and ‖∇ki − ∇k‖∗ ≤ V .

Similarly, we apply Lemma 2 with Xk = ∇ki − ∇k
and then take a union bound over i ∈ Ω and t ∈ [T ].

(2) From (1), it is clear that every i, j ∈ Ω have ‖Bit −
Btj‖∗ ≤ 4V∆

√
2t. Therefore, each i ∈ Ω is a

candidate for Bmed
t .

(3) By the definition of Bmed
t and the triangle inequality,

this is a consequence of (1).
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(4) If we apply Lemma 2 with {X1, X2, · · · , XT |Ω|} =
{∇ki −∇k}k∈[T ],i∈Ω, we can have a similar bound as
in (1).

C. Proof of Proposition 5
We apply Lemma 2 with Xt = ∇it−∇t for all i ∈ Ω first

and then take an union bound over t ∈ [T ].

D. Proof of Proposition 6
According to Assumption 1, we have ‖∇it −∇

j
t‖∗ ≤ 2V

for i, j ∈ Ω. Due to α ∈ [0, 1/2), every i ∈ Ω is a
candidate for ∇med

t = ∇it. For the second part, we show it by
contradiction. If ‖∇med

t −∇t‖∗ > 3V , then ‖∇med
t −∇it‖∗ ≥

‖∇med
t −∇t‖∗−‖∇it−∇t‖∗ > 2V for i ∈ Ω. This contradicts

the definition of ∇med
t due to α < 1/2.

E. Proof of Proposition 7
By Proposition 3(2), Proposition 4(3), and Proposition 6

that, we know |Ait − Amed
t | ≤ IA, ‖Bit − Bmed

t ‖∗ ≤ IB , and
‖∇med

t −∇ti‖∗ ≤ 4V for any i ∈ Ω. Therefore, no elements
from Ω will be removed from Ωt for t ∈ [T ].

F. Proof of Proposition 8
Let Ti ∈ {0, 1, · · · , T} be the maximum iteration index

so that i ∈ ΩTi
. The E1 can be decomposed into two sums,∑

t∈[T ]

∑
i∈Ωt

〈∇it −∇t, wt − w∗〉

=
∑
i∈Ω

(AiT −A?T + 〈BiT −B?T , w1 − w∗〉)

+
∑
i/∈Ω

(AiTi
−A?Ti

+ 〈BiTi
−B?Ti

, w1 − w∗〉).

(7)

For the first sum, by Proposition 3(1) and Proposition 4(4),
we have |

∑
i∈Ω(AiT − A?T )| ≤ 2WV∆

√
2Tm and

|
∑
i∈Ω〈Bit − B?T , w1 − w∗〉| ≤ 2WV∆

√
2Tm. For the

second sum over i /∈ Ω, by the definition of IA and Ti,
we have |AiTi

− Amed
Ti
| ≤ 4WV∆

√
2Ti ≤ IA. Combining

this with Proposition 3(2) yields

|AiTi
−A?Ti

| ≤ |AiTi
−Amed

Ti
|+ |Amed

Ti
−A?Ti

| ≤ 6WV∆
√

2T .

Similarly, we have ‖BiTi
− Bmed

Ti
‖∗ ≤ 4V∆

√
2Ti ≤ IB .

Combining this with Proposition 4(3) yields

‖BiTi
−B?Ti

‖∗ ≤ ‖BiTi
−Bmed

Ti
‖∗ + ‖Bmed

Ti
−B?Ti

‖∗
≤ 10V∆

√
2T .

Finally, we collect these bounds for (7) and use the fact
|[m]\Ω| = αm to complete the proof.

G. Proof of Proposition 9
For each t ∈ [T ], we have∥∥∥∥ 1

m

∑
i∈Ωt

(∇it −∇t)
∥∥∥∥2

∗

≤ 2

∥∥∥∥ 1

m

∑
i∈Ω

(∇it −∇t)
∥∥∥∥2

∗
+ 2

∥∥∥∥ 1

m

∑
i∈Ωt\Ω

(∇it −∇t)
∥∥∥∥2

∗

≤ 16V 2∆2

m
+ 32α2V 2

where the first inequality follows ‖a+b‖2∗ ≤ 2‖a‖2∗+2‖b‖2∗,
and the second uses Proposition 5 and Proposition 6 by
noting that |Ωt\Ω| ≤ αm.
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